ITSF 2021 A comparison of DTM and Chrony over a home internet link

Motivation and scope

- DTM over standard Ethernet and IP has been reported to provide submicrosecond precision and accuracy over long-distance MPLS links:
 - ✓ Umut Keten, "GPS Independent Time Distribution", International Timing and Sync Forum (ITSF), 4-7 November, 2019, Brighton, UK
- DTM performance over inexpensive "home internet" links has been little studied
- In this work we analyze a DTM link between two GMV offices in Spain over a Fiber To The Home (FTTH) access
- FTTH speed is 600 Mbps in downlink and uplink
- Price of the FTTH service is around 50 € / month per site
- The two offices are 130 km apart
- Tres Cantos office hosts the DTM server, locked to a UTC-like realization based on atomic clocks
- Boecillo office hosts the DTM client; DTM client time error is measured by means of a calibrated GNSS receiver

UTC scale at GMV

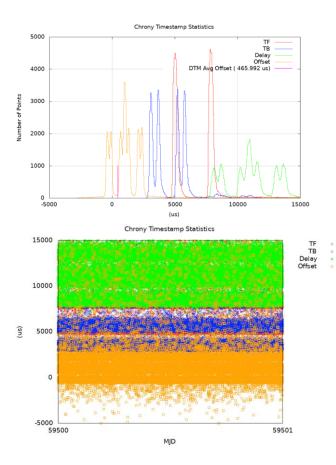
- GMV operates a UTC-like realization in our offices at Tres Cantos near Madrid, Spain
- The time scale is based on very stable atomic clocks: two Passive Hydrogen Masers (PHMs)
- Clocks are daily steered to UTC(PTB) by means of GNSS time transfer
- Local GNSS station delays have been calibrated in common-clock relative to a travelling GNSS station from ROA, the Spanish national time laboratory
- ROA's travelling station can be traced to the latest BIPM's calibration campaign (GPS P1 and P2, Galileo E1 and E5a)
- After initialization, the time scale can survive without GNSS in holdover during weeks, with an error below 10 ns

DTM setup

- DTM server and client run on a Nimbra 390 box by Net Insight
- DTM is treated as a "black box" in this work
- The underlying network does not provide any timing support for the link nor to the network equipment
- The time error at the DTM client is measured against the 1PPS from a calibrated dual-frequency low-cost GNSS receiver
- Calibrated GNSS provides UTC with an error below 5 ns
- The 1PPS from GNSS can be injected into the client Nimbra, which measures its time error autonomously
- Otherwise a Time Interval Counter can be used to measure the difference between the 1PPS from DTM (Nimbra) and the 1PPS from GNSS

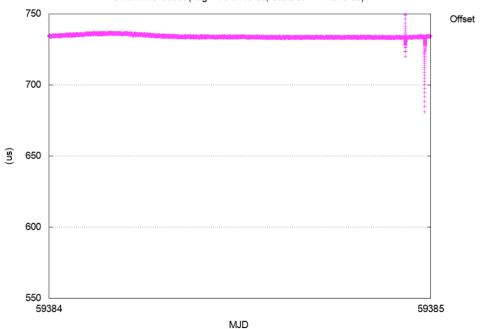
NTP setup

- NTP (Chrony implementation) is used as a "white box" to measure the behavior of the network from the point of view of packet time-stamping
- NTP server and client run on a Raspberry Pi (raspi)
- Both server and client are locked to their local external UTC source to analyze the "true behavior" of the network in absence of clock errors
- The 1PPS from UTC is injected into the raspi through a GPIO pin
- Server raspi (Tres Cantos) is locked to the local UTC time scale
- Client raspi (Boecillo) is locked to the local calibrated GNSS receiver
- The resulting NTP packet time-stamping resolution is limited to a few microseconds due to raspi hardware and OS constraints

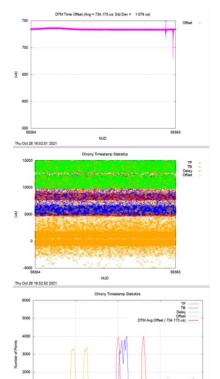


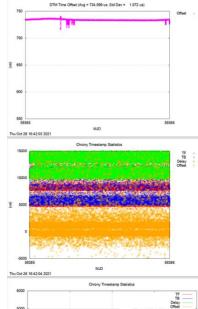
NTP configuration (1/2)

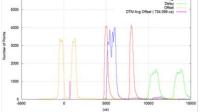
- NTP is configured to exchange packets every second
- The client NTP log is processed
- The NTP log provides the Delay and the Offset of the link every second
- Packet Time Forward (TF) and Time Backward (TB) are calculated from Delay and Offset as:
 - \checkmark TF = T2 T1 = Delay/2 + Offset
 - \checkmark TB = T4 T3 = Delay/2 Offset
- TF, TB, Delay and Offset are plotted in the form of daily time series and histograms

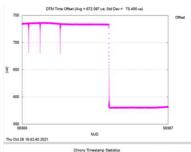

NTP configuration (2/2)

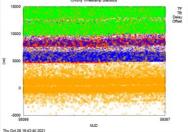
- NTP histograms show the number of forward and backward paths (or routes)
- Two forward paths are seen in the example (red peaks)
- Four backward paths are seen in the example (blue peaks)
- The peaks are wide, which indicates a high time jitter
- In addition packets seem to follow the different forward and backward paths randomly in time, as shown by the time series
- The link is also highly asymmetrical as indicated by the orange peaks (Offset) in the histogram
- Fortunately the network behavior is stable over days... until a network reconfiguration happens
- The conclusion is that this FTTH scenario is quite challenging for an accurate and precise time transfer via packet exchange

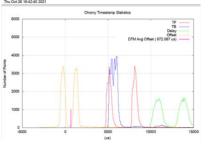

DTM results

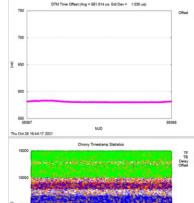

- The DTM time error on the client shows in general a large offset at the millisecond level
- Such large offset is unavoidable over FTTH due to network delay asymmetry
- However the offset is constant between network reconfigurations (i.e., during several days)
- Stability within a day is very good, at the microsecond level
- The short-term jitter is well below the microsecond (typically 300 ns at 1-sigma)
- Repeatability of the mean daily offset is at the level of 100 ns

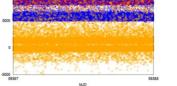


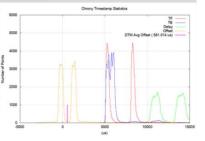

DTM Time Offset (Avg = 734.173 us; Std Dev = 1.079 us)


One-week analysis (June 19-22, 2021)





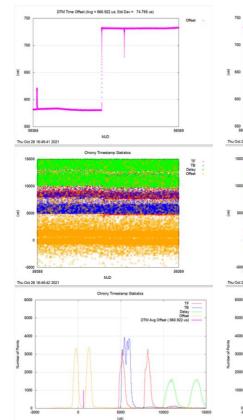


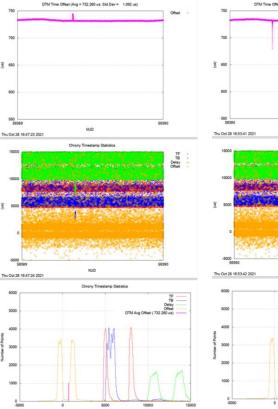


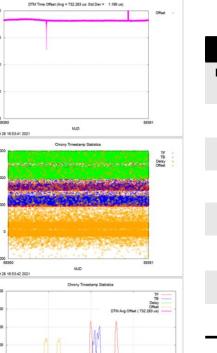
Thu Oct 28 16:44:17 2021

© GMV - November 2021 - All rights reserved

5000

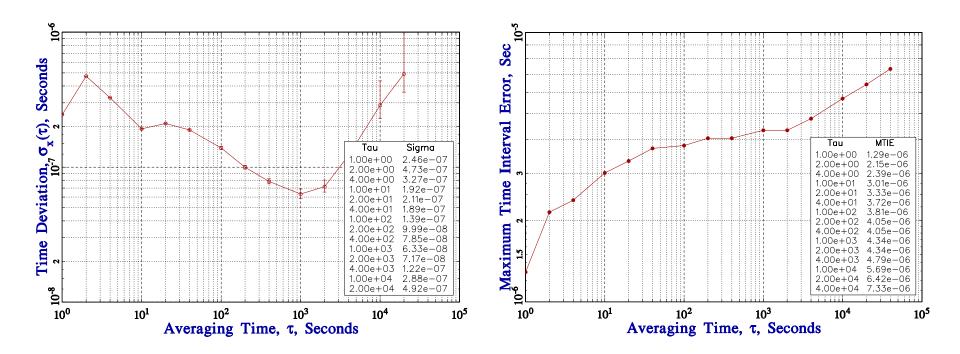

(us)


10000


1000

gn∕

One-week analysis (June 23-25, 2021)


10000

5000

(45)

Summary			
Day	Offset (us)	StDev (us)	Jitter (us)
19	734.2	1.1	0.3
20	734.1	1.1	0.3
21		jump	
22	581.0	1.0	0.3
23		jump	
24	732.3	1.1	0.3
25	732.3	1.2	0.3

TDEV and MTIE for a typical day (June 22)

Conclusions and outlook

- DTM and NTP are complementary techniques for analysis of time transfer over IP networks
- DTM time transfer over FTTH can be stable over several days at the submicrosecond level
- A large time offset at the millisecond level is unavoidable due to intrinsic FTTH network delay asymmetry
- Jumps in mean offset do occur every several days due to network reconfiguration
- Possible repeatability of mean offsets would open the door to the identification of different "calibration profiles"
- A new experimental Nimbra firmware for "auto-calibration" in case of network reconfiguration is currently being evaluated
- There is no guarantee that FTTH maintains such behavior, and a different FTTH service provision might result in a different DTM performance
- For predictable performance, better rely on MPLS or equivalent

Ricardo Píriz, Esteban Garbin, Raúl Nieto, Fulgencio Buendía, Daniel Chung (GMV) Javier González, Magnus Danielson (Net Insight)

rpiriz@gmv.com

